Introduction to Basic Composition and Microstructure of Sintered NdFeB Magnet

Introduction to Basic Composition and Microstructure of Sintered NdFeB Magnet Sintered neodymium iron boron (NdFeB) magnet or neodymium (Nd) magnet, as its name implies, contains essential rare earth Nd element. Nd atoms, coupling with ferromagnetic element iron (Fe) atoms, help the magnet obtain high remanence (Br) and maximum energy product ((BH)max), which makes it extraordinary compared with other permanent magnets. In commercial sintered NdFeB magnet, Nd element is usually partially substituted by other rare earth elements including praseodymium (Pr), dysprosium (Dy) and terbium (Tb), etc. Because Nd and Pr elements usually coexist in ore and these two elements have similar physical and chemical properties, so it is more economic to… Read More

Continue Reading

What is Maximum Working Temperature of a Permanent Magnet?

What is Maximum Working Temperature of a Permanent Magnet? Permanent magnets are widely applied in various motors, sensors/instruments and electronics, their temperatures almost vary more or less during work. These temperature variations are resulted from eddy current effect and/or ambient temperature variation. Due to thermal fluctuation and magnetic domain evolution, a permanent magnet loses some or all magnetic flux when its temperature elevates. Here comes a question, how high temperature can a permanent magnet withstand to work? For a commercial permanent magnet, the upper temperature limit is called maximum working temperature. In both fields of theory and application, the temperature elevation dependent flux loss is commonly divided into two parts,… Read More

Continue Reading