Sintered NdFeB Magnets’ Specifications

HGT Advanced Magnets Co., Ltd
- 146 Hongqi Road, Pidu District, Chengdu, China
- +86 028 69914836
- mago@advancedmagnets.com
- www.advancedmagnets.com
Table I Sintered NdFeB Magnets’ Grades and Their Magnetic Properties

<table>
<thead>
<tr>
<th>Grade</th>
<th>B_r (kGs)</th>
<th>H_{cb} (kOe)</th>
<th>H_{cj} (kOe)</th>
<th>$(BH)_{max}$ (MGOe)</th>
<th>T_w (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N52</td>
<td>14.2-14.8</td>
<td>1.42-1.48</td>
<td>≥ 10.5</td>
<td>≥ 836</td>
<td>≥ 11</td>
</tr>
<tr>
<td>N50</td>
<td>13.9-14.4</td>
<td>1.39-1.44</td>
<td>≥ 10.8</td>
<td>≥ 859</td>
<td></td>
</tr>
<tr>
<td>N48</td>
<td>13.6-14.1</td>
<td>1.36-1.41</td>
<td>≥ 11.6</td>
<td>≥ 923</td>
<td>≥ 12</td>
</tr>
<tr>
<td>N45</td>
<td>13.2-13.7</td>
<td>1.32-1.37</td>
<td>≥ 11.6</td>
<td>≥ 923</td>
<td></td>
</tr>
<tr>
<td>N42</td>
<td>12.8-13.3</td>
<td>1.28-1.33</td>
<td>≥ 11.4</td>
<td>≥ 907</td>
<td></td>
</tr>
<tr>
<td>N40</td>
<td>12.4-12.9</td>
<td>1.24-1.29</td>
<td>≥ 11.4</td>
<td>≥ 907</td>
<td>≥ 13</td>
</tr>
<tr>
<td>N38</td>
<td>12.1-12.6</td>
<td>1.21-1.26</td>
<td>≥ 11.2</td>
<td>≥ 891</td>
<td></td>
</tr>
<tr>
<td>N35</td>
<td>11.7-12.2</td>
<td>1.17-1.22</td>
<td>≥ 10.8</td>
<td>≥ 859</td>
<td></td>
</tr>
<tr>
<td>N33</td>
<td>11.3-11.8</td>
<td>1.13-1.18</td>
<td>≥ 10.5</td>
<td>≥ 836</td>
<td>≥ 14</td>
</tr>
<tr>
<td>N30</td>
<td>10.8-11.3</td>
<td>1.08-1.13</td>
<td>≥ 10.0</td>
<td>≥ 796</td>
<td></td>
</tr>
<tr>
<td>N50M</td>
<td>13.9-14.4</td>
<td>1.39-1.44</td>
<td>≥ 13.0</td>
<td>≥ 1035</td>
<td></td>
</tr>
<tr>
<td>N48M</td>
<td>13.6-14.1</td>
<td>1.36-1.41</td>
<td>≥ 12.8</td>
<td>≥ 1019</td>
<td></td>
</tr>
<tr>
<td>N45M</td>
<td>13.2-13.7</td>
<td>1.32-1.37</td>
<td>≥ 12.5</td>
<td>≥ 995</td>
<td>≥ 16</td>
</tr>
<tr>
<td>N42M</td>
<td>12.8-13.3</td>
<td>1.28-1.33</td>
<td>≥ 12.0</td>
<td>≥ 955</td>
<td></td>
</tr>
<tr>
<td>N40M</td>
<td>12.4-12.9</td>
<td>1.24-1.29</td>
<td>≥ 11.6</td>
<td>≥ 923</td>
<td>≥ 17</td>
</tr>
<tr>
<td>N38M</td>
<td>12.1-12.6</td>
<td>1.21-1.26</td>
<td>≥ 11.3</td>
<td>≥ 899</td>
<td></td>
</tr>
<tr>
<td>N35M</td>
<td>11.7-12.2</td>
<td>1.17-1.22</td>
<td>≥ 10.9</td>
<td>≥ 867</td>
<td>≥ 18</td>
</tr>
<tr>
<td>N33M</td>
<td>11.3-11.8</td>
<td>1.13-1.18</td>
<td>≥ 10.5</td>
<td>≥ 836</td>
<td></td>
</tr>
<tr>
<td>N30M</td>
<td>10.8-11.3</td>
<td>1.08-1.13</td>
<td>≥ 10.0</td>
<td>≥ 796</td>
<td></td>
</tr>
<tr>
<td>N50H</td>
<td>13.9-14.4</td>
<td>1.39-1.44</td>
<td>≥ 13.0</td>
<td>≥ 1035</td>
<td>≥ 20</td>
</tr>
<tr>
<td>N48H</td>
<td>13.6-14.1</td>
<td>1.36-1.41</td>
<td>≥ 12.8</td>
<td>≥ 1019</td>
<td></td>
</tr>
<tr>
<td>N45H</td>
<td>13.2-13.7</td>
<td>1.32-1.37</td>
<td>≥ 12.5</td>
<td>≥ 995</td>
<td>≥ 20</td>
</tr>
<tr>
<td>N42H</td>
<td>12.8-13.3</td>
<td>1.28-1.33</td>
<td>≥ 12.0</td>
<td>≥ 955</td>
<td></td>
</tr>
<tr>
<td>N40H</td>
<td>12.4-12.9</td>
<td>1.24-1.29</td>
<td>≥ 11.6</td>
<td>≥ 923</td>
<td>≥ 20</td>
</tr>
<tr>
<td>N38H</td>
<td>12.1-12.6</td>
<td>1.21-1.26</td>
<td>≥ 11.3</td>
<td>≥ 899</td>
<td></td>
</tr>
<tr>
<td>N35H</td>
<td>11.7-12.2</td>
<td>1.17-1.22</td>
<td>≥ 10.9</td>
<td>≥ 867</td>
<td>≥ 20</td>
</tr>
<tr>
<td>N33H</td>
<td>11.3-11.8</td>
<td>1.13-1.18</td>
<td>≥ 10.5</td>
<td>≥ 836</td>
<td></td>
</tr>
<tr>
<td>N30H</td>
<td>10.8-11.3</td>
<td>1.08-1.13</td>
<td>≥ 10.0</td>
<td>≥ 796</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>B_r</td>
<td>H_{cb}</td>
<td>H_{cj}</td>
<td>$(BH)_{max}$</td>
<td>T_w</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>kGs</td>
<td>T</td>
<td>kOe</td>
<td>kA/m</td>
<td></td>
</tr>
<tr>
<td>N42UH</td>
<td>12.8-13.3</td>
<td>1.28-1.33</td>
<td>≥12.2</td>
<td>≥971</td>
<td>≥25</td>
</tr>
<tr>
<td>N40UH</td>
<td>12.4-12.9</td>
<td>1.24-1.29</td>
<td>≥11.8</td>
<td>≥939</td>
<td>≥25</td>
</tr>
<tr>
<td>N38UH</td>
<td>12.1-12.6</td>
<td>1.21-1.26</td>
<td>≥11.5</td>
<td>≥915</td>
<td>≥30</td>
</tr>
<tr>
<td>N35UH</td>
<td>11.7-12.2</td>
<td>1.17-1.22</td>
<td>≥11.1</td>
<td>≥883</td>
<td>≥35</td>
</tr>
<tr>
<td>N33UH</td>
<td>11.3-11.8</td>
<td>1.13-1.18</td>
<td>≥10.7</td>
<td>≥851</td>
<td>≥30</td>
</tr>
<tr>
<td>N30UH</td>
<td>10.8-11.3</td>
<td>1.08-1.13</td>
<td>≥10.2</td>
<td>≥812</td>
<td>≥30</td>
</tr>
<tr>
<td>N40EH</td>
<td>12.4-12.9</td>
<td>1.24-1.29</td>
<td>≥11.8</td>
<td>≥939</td>
<td>≥30</td>
</tr>
<tr>
<td>N38EH</td>
<td>12.1-12.6</td>
<td>1.21-1.26</td>
<td>≥11.5</td>
<td>≥915</td>
<td>≥30</td>
</tr>
<tr>
<td>N35EH</td>
<td>11.7-12.2</td>
<td>1.17-1.22</td>
<td>≥11.1</td>
<td>≥883</td>
<td>≥30</td>
</tr>
<tr>
<td>N33EH</td>
<td>11.3-11.8</td>
<td>1.13-1.18</td>
<td>≥10.7</td>
<td>≥851</td>
<td>≥30</td>
</tr>
<tr>
<td>N30EH</td>
<td>10.8-11.3</td>
<td>1.08-1.13</td>
<td>≥10.2</td>
<td>≥812</td>
<td>≥30</td>
</tr>
<tr>
<td>N35AH</td>
<td>11.7-12.2</td>
<td>1.17-1.22</td>
<td>≥11.1</td>
<td>≥883</td>
<td>≥30</td>
</tr>
<tr>
<td>N33AH</td>
<td>11.3-11.8</td>
<td>1.13-1.18</td>
<td>≥10.7</td>
<td>≥851</td>
<td>≥35</td>
</tr>
<tr>
<td>N30AH</td>
<td>10.8-11.3</td>
<td>1.08-1.13</td>
<td>≥10.2</td>
<td>≥812</td>
<td>≥35</td>
</tr>
<tr>
<td>N28AH</td>
<td>10.4-10.9</td>
<td>1.04-1.09</td>
<td>≥9.8</td>
<td>≥780</td>
<td>≥35</td>
</tr>
</tbody>
</table>

Note:
* The data in the above table were samples’ results tested at the temperature of 20 °C.
* The temperature coefficients of B_r and H_{cj} are $\alpha(B_r): -0.09~-0.12 \%/°C$ and $\beta(H_{cj}): -0.40~-0.60 \%/°C$, respectively.
* The above data are only for reference, magnets can be tailored according to customers’ personalized requirements.
Table II Sintered NdFeB Magnets’ Shapes, Magnetization Direction and Size Range

<table>
<thead>
<tr>
<th>Shape</th>
<th>Graphic Description</th>
<th>Magnetization Direction</th>
<th>Size Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc/Cylinder</td>
<td></td>
<td>Axially Magnetized</td>
<td>D: 1-100 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T: 0.5-100 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diametrically Magnetized</td>
<td>D: 1-100 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T: 0.5-100 mm</td>
</tr>
<tr>
<td>Ring</td>
<td></td>
<td>Axially Magnetized</td>
<td>OD: 4-100 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ID: 1-90 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diametrically Magnetized</td>
<td>OD: 4-100 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ID: 1-90 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radially Magnetized</td>
<td>OD: 24-200 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ID: 18-180 mm</td>
</tr>
<tr>
<td>Block/Rectangular</td>
<td></td>
<td>Thickness Magnetized</td>
<td>L: 1-160 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W: 1-100 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diametrically Magnetized</td>
<td>OD-ID≥1 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L: 1-160 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W: 3-100 mm</td>
</tr>
<tr>
<td>Arc/Segment</td>
<td></td>
<td>Diametrically Magnetized</td>
<td>OD-ID≥1 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L: 1-160 mm</td>
</tr>
</tbody>
</table>

Note:
* Other shapes of sintered NdFeB magnets can also be tailored according to customers’ specific requirements.
Table III Sintered NdFeB Magnets’ Coating Types

<table>
<thead>
<tr>
<th>Coating</th>
<th>Thickness (μm)</th>
<th>SST (hr)</th>
<th>PCT (hr)</th>
<th>T_w (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn (Zinc)</td>
<td>5-15</td>
<td>>24</td>
<td>-</td>
<td>≤160</td>
</tr>
<tr>
<td>C-Zn (Colored Zinc)</td>
<td>5-15</td>
<td>>48</td>
<td>-</td>
<td>≤160</td>
</tr>
<tr>
<td>Electroless Nickel</td>
<td>10-30</td>
<td>>96</td>
<td>>72</td>
<td>≤230</td>
</tr>
<tr>
<td>NiCuNi (Nickel Copper Nickel)</td>
<td>10-20</td>
<td>>48</td>
<td>>48</td>
<td>≤230</td>
</tr>
<tr>
<td>NiCu + Black Nickel</td>
<td>10-20</td>
<td>>48</td>
<td>>72</td>
<td>≤230</td>
</tr>
<tr>
<td>NiCuNi + Tin</td>
<td>10-25</td>
<td>>48</td>
<td>>48</td>
<td>≤160</td>
</tr>
<tr>
<td>NiCuNi + Gold</td>
<td>10-25</td>
<td>>48</td>
<td>>48</td>
<td>≤230</td>
</tr>
<tr>
<td>NiCuNi + Silver</td>
<td>10-25</td>
<td>>48</td>
<td>>48</td>
<td>≤160</td>
</tr>
<tr>
<td>Epoxy</td>
<td>10-30</td>
<td>>72</td>
<td>>48</td>
<td>≤160</td>
</tr>
<tr>
<td>Teflon</td>
<td>10-20</td>
<td>>48</td>
<td>-</td>
<td>≤230</td>
</tr>
<tr>
<td>Everlube</td>
<td>10-20</td>
<td>>96</td>
<td>>72</td>
<td>≤230</td>
</tr>
<tr>
<td>Parylene</td>
<td>0.2-5</td>
<td>>96</td>
<td>-</td>
<td>≤230</td>
</tr>
</tbody>
</table>

Note:

* Salt spray test (SST) was conducted at 35 °C with 5% NaCl solution.
* Pressure cooker test (PCT) was conducted at 120 °C, 2 atm and 100% RH.

Table IV Some Physical Properties of Sintered NdFeB Magnets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (ρ)</td>
<td>g/cm3</td>
<td>7.4-7.7</td>
</tr>
<tr>
<td>Curie Temperature (T_c)</td>
<td>°C</td>
<td>310-370</td>
</tr>
<tr>
<td>Recoil Permeability (μ_{rec})</td>
<td>-</td>
<td>1.05</td>
</tr>
<tr>
<td>Vickers Hardness (HV)</td>
<td>MPa</td>
<td>500-600</td>
</tr>
<tr>
<td>Bending Strength (σ_{ab})</td>
<td>MPa</td>
<td>200-400</td>
</tr>
<tr>
<td>Compressive Strength (σ_{bc})</td>
<td>MPa</td>
<td>1000-1100</td>
</tr>
<tr>
<td>Tensile Strength (σ_b)</td>
<td>MPa</td>
<td>80-90</td>
</tr>
<tr>
<td>Resistivity (ρ)</td>
<td>$\mu\Omega\cdot$m</td>
<td>1.4-1.6</td>
</tr>
<tr>
<td>Thermal Conductivity (λ)</td>
<td>W/(m·K)</td>
<td>8-10</td>
</tr>
<tr>
<td>Young's Modulus (E)</td>
<td>GPa</td>
<td>150-200</td>
</tr>
<tr>
<td>Thermal Expansivity // Magnetization ($\alpha_{//}$)</td>
<td>10^6/°C</td>
<td>3-4</td>
</tr>
<tr>
<td>Thermal Expansivity ⊥ Magnetization (α_{\perp})</td>
<td>10^6/°C</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Note:

* The above data are only for reference, specific magnets may have different values.